Signal Processing and Control Challenges in MOSAIC

August 21, 2001

- MOSAIC goals will require teams including mathematical expertise
 - Signal processing
 - Control science
 - Numerical analysis
 - Special purpose processor architectures
- Past DARPA/DSO programs have achieved major technological advances through teaming of mathematicians with other scientists and practitioners

0

S

C

A Simplified System Perspective

0

S

C

Simplified System Perspective

Contains Desired Structural Information

0

S

Simplified System Perspective

Random Quantum Effects **Measurement Noise**

Controllable

Contains Desired Structural Information Measurable

4

I

C

Potential Signal Processing Contributions

- Characterization of noise sources
- Design of measurement processes
 - Minimize SNR
 - Maximize potential processing gain
- Development of fast image quality metrics (for feedback to measurement process)
- Novel excitation signals (phase coding?)
- Very high-speed algorithms (on specialized architectures)

Potential Control Aspects

- Nanopositioning; Manipulation of objects under observation
- Strategies that exploit multiple scales of phenomenology and controls
- Feedback from measurement and/or image formation processes to controllable inputs

0

S

C

Simplified System Perspective

